presents

Frog

An AES Candidate Alg onthm
i) h.ﬂg* A
, R e

': .

"ﬂn"“'

g

Names Gfialgoritnm dev_elbpers:

Dianelos Georges Georgoudis
Damianleraux
BHIVISITON Chaves

"lﬂ'

Sz e

I
F& h "-1"' & ._-1 l,-.ﬂ B - B
P et o N U) S

FROG encrypts a data block by interpreting
a sequence of primitive invertible instructions
coded into the internal key.

To decrypt a block, this process is simply
run in reverse, thus effectively
un-doing the encryption.

High Level of View of FROG

user key

hash
v

pseudo-random array

formatting prm:essl

FFEi‘G-IintfrPall-kTq
‘ plaintext |—> E ciphertext

FROG interpreter

One Iteration of FROG

xorBuf j]

é‘(subﬁtPtrmu)

data block | «--

R k
bombPermu

Formatting the Internal Key

pseudo-random
array

- ermutation of 256 bytes
one record of S box K =

the internal key @ e 16 bytes directly copied

permutation of 16 bytes

cycle of maximum length

not point to prox. element

T a kT P T
e "j— Egr—_ - v‘hlin-.ll" -
-5&-: Pt 4 Toma 7B o e T e

e —— el = .'Tf-.ﬂ-
I-Ii"‘F_"-l- 1Il'l 1-\...n...|..|.-l"'a.1-|
-

- Permutation Generating Algorithm

Function Transform an array filled with arbitrary bytes into
a permutation of the same length.

Alﬂﬂr“hm Fill Use-array with sequential values.
Then compute indexes on Use-array:

index{i) = (index(i-1) + P[i]) mod (length-Use-array)
Pli] = Use[index(i)]
remove element index(i) from Use array

Example

0l1]2/314 5 6 7 g 1 2 3 4 5 6 1

105 135 188 156 103 91 €8 208
ol1J2 314 56 7 i=(0 + P[0)) mod 8 -!_% 1 135 188 156 103 91 &8 208
ol2lz34 5 6 7 i=(1 + P[1]) mod 7 =L 1 4 188 156 103 91 68 208
olzl3 5 6 7 i={2 + P[2]) mod 6 = 1 4 7 158 103 91 €8 208
oMMz 5 6 i=(5 + P[3]) mod 5 = il s =7 103 91 €8 208
0356 i=(1 + P[4]) mod 4 = O 1 4 7 2 0 91 €8 208
3586 i=(0 + P[5]) mod 3 = 1 1 4 7 2 0 5 €8 208
36 i=(1 + P[6]) mod 2 = 1 1 4 7 2 0 5 6 208
3 g) 3

'Use" array Permufation” arragr

- Maximum Cycle Algorithm

Function Transform an arbitrary permutation into one
that has a maximum cycle.

Algorithm 1f a smaller cycle is found, join it with another
cycle. Repeat until only one cycle is present.

Example

Originalstate | 310 (5111214
0 2 3 5

Finalstate [3|2 (S| 1]0

User Key Hash

/- user key | s..125 bytes

user user b Y user user | 2304 bytes

2304 bytes

251 bytes i
simple expanded key 2304 bytes
fnrmatl
= | . T T T
X 3 : 2304 byte:
~|—|7|3Iliﬂ|:llle IFH':D? llntei-rnlal I-(e:f : ytes

™

user key
length — \Y; empty array

p (5..125)
: 2304 bytes

16 bytes

0 0 0 0 0 0 0 00 0 O 0 04 0 0 O O 6 0 A

£304 bytes

Important Characteristics of the Cipher

. FROG has an extremely simple structure and
represents an instance of a novel design principle.

. FROG uses only byte level XORs and byte level
substitutions.

. FROG’s can encrypt blocks of any size between 8 and
128 bytes.

. FROG’s user key can have any size between 5 and 125
bytes.

. FROG’s key expansion can be modified by the user
without affecting its strength.

. FROG has only one constant table whose values are
not critical for its strength.

. No weak keys are known for FROG.

. Once the internal key is setup, the encryption and
decryption processes of FROG are extremely simple
(22 machine instructions of 8086 assembler).

FROG’s strength

FROG is anew type of cipher, designed to resist both
known and unknown attacks.

Known attacks such as differential and linear
cryptanalysis attacks are not expected to work because
FROG uses S-boxes initialized with effectively random
values which are unknown to the cryptanalyst.

FROG resists unknown attacks because:

1. It has a simple structure that decreases the probability
of a flaw.

2. FROG has not been designed specifically to resist
known attacks. If it manages to resist the intensive
cryptanalysis that the AES candidates will go through,
confidence will be gained about its strength against all
attacks.

3. It resists mathematical modeling.

4. It has a very complex internal key setup.

FROG’s speed

Pentium 200 MHz

8 bit optimized , 8086 multi-
processors C assembly |encryption
Machine instructions
per byte ~ 100 ~ 100 60 150 ?

bytes per second 21K? | 1.3-1.7M| 2.2M 10 M ?

CPU cycles per byte 1100 ? 120-160 90 20 ?

FROG's very complex key setup process needs 10
mseg on a Pentium 200.

Smart card applications will pre-compute and store
the internal key.

FROG'’s encryption or decryption speed per byte
does not depend either on the user key size or on the

size of the data block.

FROG’s memory requirements

FROG memory requirement for encryption or
decryption is exactly the size of its internal key:

2,304 bytes for 16 byte blocks (NIST standard)

- 4,096 bytes for 128 byte blocks (largest
block tested)

The key setup process is recursive and requires
approximately twice as much memory.

FROG’s Design Principles

1.Hide as much information about the actual
computational process of encryption as possible.

2.Implement an algorithm that is very simple so that
no trap-doors can be hidden in it and so that the
probability of obscure structural flaws is
minimized. (Minimize human bias in the design of
the algorithm.)

3.Devise an algorithm that resists mathematical
modeling.

The goal of these design principles is to strengthen
FROG against all possible attacks, not just known
ones.

Generalization of FROG

A more general version of FROG can be created
that divulges even less structural information.

1. FROG processes each byte in the data block
sequentially. This can be variable and change in
each round.

2.FROG uses one S-table per round. Make this
variable per byte and per round.

3. FROG uses 8 S-tables and 8 rounds. Allow for a
variable number of tables and a variable number
of rounds.

4.FROG’s implements key dependent destinations.
Allow for data dependent destinations too.

These points can be easily coded in the current
version of FROG without much effect on its speed.

Towards a Perfect Vacuum

Even more information can be hidden:

1. FROG uses only XOR arithmetic operations. Allow for
a bigger set that includes ADDs, data dependent
circular shifts, etc. Allow the user to define the subset
desired.

2. FROG processes each byte executing four specific
instructions in a fixed order. Allow for a variable
number, type and order of instructions. Allow for
different “micro-ciphers” for different cycles.

These points can be implemented efficiently by using a
“user-key compiler” that inputs a key and produces
executable code and tables.

Generalized FROG works as a cipher generator and is
very malleable. For example, if memory is a limited
guantity, fewer S-boxes can be used. At the extreme
FROG could produce a key-dependent cipher that
requires no memory at all.

=
O
ﬂhvn
o
-
<1
(0
<
O
g
)
o
T
=t
©

